바이오닉스 예
복월무늬 나비, 갈색맥의 제왕나비, 특히 형광날개의 나비와 같은 각양각색의 나비가 햇빛 아래서 갑자기 금, 녹색, 파랑으로 변했다. 과학자들은 나비의 색깔을 연구함으로써 군사 방어에 큰 이득을 가져왔다. 제 2 차 세계 대전 중 독일군은 레닌그라드를 포위하고 폭격기로 군사 목표와 기타 방어 시설을 파괴하려고 했다. 소련 곤충학자 슈워제네거는 당시 위장에 대한 인식이 부족했기 때문에 나비의 색깔이 꽃 속에서 쉽게 발견되지 않는 원리를 제시하고 나비 같은 위장으로 군사 시설을 덮었다. 따라서 독일군의 노력에도 불구하고 레닌그라드의 군사 기지는 손상되지 않고 최종 승리를 위한 견고한 토대를 마련했습니다. 같은 원리에 따르면, 나중에 사람들은 위장복을 생산하여 전투에서 사상자를 크게 줄였다.
우주에서 위성의 위치가 끊임없이 변하면 온도의 급격한 변화가 일어날 수 있으며, 때로는 온도차가 2 ~ 300 도까지 올라갈 수 있어 많은 기구의 정상적인 작동에 심각한 영향을 미칠 수 있다. 나비의 비늘은 태양의 방향에 따라 자동으로 각도를 바꿔 체온을 조절하는 계발을 받고, 과학자들은 위성의 온도 조절 시스템을 블라인드로 만들어 방사선과 냉각 능력이 다르다. 각 창의 회전 위치에는 온도에 민감한 금속선이 설치되어 있어 온도 변화에 따라 창을 열고 닫을 수 있어 위성 내부 온도를 일정하게 유지함으로써 우주 산업의 큰 난제를 해결할 수 있다.
딱정벌레
딱정벌레가 스스로를 방어할 때, 그것은 악취가 나는 고온의 액체' 껍데기' 를 내뿜어 적을 미혹시키고 자극하고 위협할 수 있다. 과학자들은 해부 후 딱정벌레 안에 이원페놀 용액, 과산화수소, 바이오효소가 들어 있는 세 개의 챔버가 있다는 것을 발견했다. 페놀과 과산화수소가 제 3 실로 유입되어 바이오효소와 혼합되어 화학반응이 일어나100 C 에서 순식간에 독이 되어 빠르게 뿜어져 나왔다. 이 원칙은 현재 군사 기술에 적용되었다. 제 2 차 세계 대전 중 독일 나치는 이 기작에 따라 전력이 크고 성능이 안전하고 믿을 수 있는 신형 엔진을 만들어 순항 미사일에 설치해 비행 속도가 더 빠르고, 안전하고, 안정적이며, 적중률을 높였다. 영국 런던은 폭격을 당했을 때 큰 손실을 입었다. 미국 군사 전문가들은 딱정벌레 살포 원리에 영감을 받아 선진적인 이원무기를 개발하였다. 이 무기는 두 개 이상의 독소를 생산할 수 있는 화학물질을 두 개의 독립된 용기에 담는다. 포탄이 발사된 후 격막이 파열되고, 두 독극물 중간체가 탄환비행 8- 10 초 이내에 혼합반응을 하여 목표물에 도달하여 적을 죽이는 순간에 치명적인 독액을 발생시킨다. 생산, 저장, 운송이 쉽고 안전하며 오류가 발생하기 쉽지 않습니다. 반딧불이는 화학에너지를 빛 에너지로 직접 변환할 수 있으며, 변환 효율은 100% 에 이르지만 일반 전등의 발광 효율은 6% 에 불과하다. 반딧불이의 발광 원리를 모방하여 만든 냉광은 발광 효율을 10 배 이상 높여 에너지를 크게 절약할 수 있다. 또한 딱정벌레의 표관 운동 응답 메커니즘에 기반한 공대지 속도계가 항공에 성공적으로 적용되었다.
잠자리
잠자리는 날개의 진동을 통해 주변 대기와는 다른 국부적으로 불안정한 기류를 생성할 수 있으며, 기류로 생성된 소용돌이를 이용하여 자신을 상승시킬 수 있다. 잠자리는 작은 추력으로 날 수 있고, 앞으로 날 뿐만 아니라 뒤로 좌우로 날 수 있으며, 앞으로 나는 비행 속도는 72 km/h 에 달할 수 있으며, 잠자리의 비행 동작은 간단하며, 두 쌍의 날개만 계속 펄럭인다. 과학자들은 이런 구조적 기초를 바탕으로 헬리콥터를 성공적으로 개발했다. 비행기가 고속으로 비행할 때, 왕왕 격렬한 진동을 일으키며, 때로는 날개를 부러뜨려 비행기가 추락할 수도 있다. 잠자리는 고속으로 비행할 때 무사하기 때문에 잠자리를 모방하여 비행기의 두 날개에 무게를 더해 고속 비행으로 인한 진동이라는 까다로운 문제를 해결합니다.
글라이딩 비행과 충돌의 공기역학과 비행 효율을 연구하기 위해 사엽 구동과 리모컨 수평 제어를 위한 기동 날개 (날개) 모델을 개발해 풍동에서 처음으로 비행 매개변수를 테스트했다.
두 번째 모델은 초당 18 회 진동 속도에 도달하기 위해 더 빠른 주파수로 비행하는 날개를 설치하려고 합니다. 이와는 달리, 이 차종은 전후익의 위상차를 가변적으로 조절할 수 있는 장치를 채택하고 있다.
이 연구의 중심과 장기 목표는' 날개' 에 의해 구동되는 비행기의 성능을 연구하고 이를 기존의 나선형 프로펠러에 의해 구동되는 비행기의 효율성과 비교하는 것이다.
날다
집파리의 특별한 점은 빠른 비행 기술로 인해 인간에게 잡히기 어렵다는 것이다. 그 뒤에도 접근하기가 어렵다. 모든 상황을 상상하고, 매우 조심스럽고, 빠르게 움직일 수 있습니다. 그럼, 어떻게 그런 짓을 한 거 야?
곤충학자들은 파리의 뒷날개가 한 쌍의 평형대로 퇴화하는 것을 발견했다. 그것이 날 때, 균형봉은 일정한 주파수로 기계적으로 진동하여 날개의 운동 방향을 조절할 수 있으며, 파리의 균형을 유지하는 내비게이터이다. 이 원리를 바탕으로 과학자들은 차세대 내비게이션인 진동 팽이를 개발해 비행기의 비행 성능을 크게 향상시켰고, 비행기가 위험한 측면비행을 자동으로 멈추고 기체가 강하게 기울어질 때 균형을 자동으로 회복했다. 심지어 비행기가 가장 복잡한 급선회에 처해 있을 때에도. 파리의 복안은 독립적으로 영상화할 수 있는 4,000 개의 단안을 포함하고 있으며, 거의 360 도에서 물체를 선명하게 볼 수 있다. 파리의 눈에서 영감을 받아 사람들은 1329 개의 작은 렌즈로 구성된 파리 눈 카메라를 만들어 한 번에 1329 장의 고해상도 사진을 찍을 수 있다. 군사, 의료, 항공, 우주 분야에서 널리 사용되고 있습니다. 파리의 후각은 특히 예민해서 수십 가지 냄새를 빠르게 분석하고 즉시 반응할 수 있다. 과학자들은 파리 후각 기관의 구조에 따라 각종 화학반응을 전기 펄스로 변환해 매우 예민한 소형 가스 분석기를 만들어 우주선 잠수함 광산 등 검출 가스 성분에 광범위하게 적용해 과학연구 생산의 안전계수를 더욱 정확하고 안정적으로 만들었다.
꿀벌
벌집은 가지런하게 배열된 육각형 벌집으로 이루어져 있으며, 각 작은 벌집의 바닥은 세 개의 동일한 마름모꼴로 이루어져 있다. 이 구조들은 현대 수학자들이 정확하게 계산한 구조와 똑같다. 마름모꼴 둔각 109 028', 예각 70032'. 이들은 가장 재료를 절약하는 구조이며, 용량이 크고 견고하기 때문에 많은 전문가들을 놀라게 한다. 사람들은 그 구조를 모방하여 다양한 재료로 벌집 메자닌 구조판을 만들었는데, 이 구조판은 강도가 높고 무게가 가벼우며 소리와 열을 전도하기 쉽지 않다. 그것들은 우주 왕복선, 우주선, 인공위성을 만드는 이상적인 재료이다. 편광의 방향에 민감한 편광경은 꿀벌의 복안의 각 단안 안에 인접해 있어 태양에 의해 정확하게 위치할 수 있다. 이 원리에 근거하여 과학자들은 편광의 내비게이션을 성공적으로 개발하여 내비게이션에 광범위하게 응용하였다.
기타
틀 벼룩의 튀는 능력은 매우 높아서 항공 전문가가 그것에 대한 연구가 가장 많다. 영국의 한 항공기 제조 회사는 수직 이륙에서 영감을 받아 거의 수직으로 이착륙할 수 있는 해리 비행기를 만드는 데 성공했다. 곤충단복안의 구조적 특징에 따르면 현대텔레비전 기술은 대형 컬러텔레비젼을 만들었고, 작은 컬러텔레비전 스크린으로 대형 스크린을 구성할 수도 있고, 같은 화면의 어느 곳에나 특정 작은 화면을 만들 수 있어 같은 화면이나 다른 화면을 재생할 수 있다. (데이비드 아셀, Northern Exposure (미국 TV 드라마), Northern Exposure (미국 TV 드라마) 곤충복안의 구조적 특징에 따르면 과학자들은 목표물을 더 쉽게 발견할 수 있는 다중 구멍 광학 시스템 장치를 개발하여 외국의 일부 중요한 무기 시스템에 응용하는 데 성공했다. 일부 수생 곤충의 복안 단안 간의 상호 억제 원리에 따라 다양한 사진 시스템에 사용할 수 있는 측면 억제 전자 모델이 만들어졌다. 촬영한 사진은 이미지 가장자리 대비를 향상시키고, 윤곽을 강조하며, 레이더의 표시 감도를 높이고, 문자 및 그림 인식 시스템의 사전 처리에 사용할 수 있습니다. 미국은 곤충복안의 처리 정보와 방향 내비게이션의 원리를 바탕으로 실용적인 가치를 지닌 말제도 시커 공학 모델을 개발했다. 일본은 곤충의 형태와 특징을 이용해 6 족 로봇 등 건설기계와 건물의 새로운 건설방법을 개발했다.
곤충은 억만년의 진화 과정에서 환경이 변화함에 따라 점차 진화해 왔으며, 모두 각기 다른 정도로 자신의 생존 기술을 발전시키고 있다. 사회가 발전함에 따라 곤충의 각종 생명활동에 대한 인식이 많아지면서 곤충이 인류에게 미치는 중요성을 점점 더 인식하고 있다. 게다가 정보기술의 응용, 특히 차세대 컴퓨터 바이오전자 기술의 곤충학에서의 응용, 곤충의 인식능력을 시뮬레이션하여 물질의 종류와 농도를 감지하여 개발한 바이오센서, 참조 곤충 신경 구조를 참고하여 뇌 활동을 모방하여 개발한 컴퓨터 등은 과학자의 구상에서 현실로 변해 각 분야에 들어가면 곤충이 인류에게 더 큰 기여를 할 것이다.